Optimizing Use of Continuous Glucose Monitoring in Clinical Practice

Diana Isaacs, PharmD, BCPS, BCACP, BC-ADM, CDCES
Clinical Pharmacy Specialist/CGM Program Coordinator
Cleveland Clinic Diabetes Center
Cleveland, OH
Disclosures

- Diana Isaacs, PharmD is a consultant or speaker for the following companies:
 - Dexcom, Abbott, Companion Medical, Insulet, Novo Nordisk, Lilly, Xeris Pharmaceuticals
Learning Objectives

At the end of this presentation, participants will be able to:

• Summarize the clinical data supporting CGM use in people with diabetes
• Compare and contrast CGM devices available for personal and professional use
• Utilize the ambulatory glucose profile and key metrics to systematically review a CGM report
• Describe how to use retrospective and real time CGM data to engage the PWD in self-management
Introduction to CGM

• Measures glucose from interstitial fluid (ISF) every 1-5 minutes
• Records glucose every 5-15 minutes (up to 288 readings/day)
• 3 components (Sensor, Transmitter, Receiver)

The sensor filament is less than 0.4 mm thick
SMBG vs CGM

Undetected hypoglycemia

Undetected hyperglycemia

● = glucometer readings

Blood glucose (mg/dL)

Time (hours)
<table>
<thead>
<tr>
<th>Exposure</th>
<th>Washed Hands</th>
<th>Exposed Finger (No Washing)</th>
<th>1 Alcohol Wipe</th>
<th>5 Alcohol Wipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peeling an orange (n=10)</td>
<td>98 mg/dL</td>
<td>171 mg/dL</td>
<td>118 mg/dL</td>
<td>119 mg/dL</td>
</tr>
<tr>
<td>Peeling a grape (n=10)</td>
<td>93 mg/dL</td>
<td>360 mg/dL</td>
<td>274 mg/dL</td>
<td>131 mg/dL</td>
</tr>
<tr>
<td>Peeling a kiwi (n=10)</td>
<td>90 mg/dL</td>
<td>183 mg/dL</td>
<td>144 mg/dL</td>
<td>106 mg/dL</td>
</tr>
</tbody>
</table>

Limitations to Hemoglobin A1C

- It is a surrogate marker
- Based on an average
- Factors that affect red blood cell turnover can make this inaccurate
- Anemia, hemoglobinopathies and other conditions may falsely elevate or decrease
How does exercise affect glucose levels?

A. Increase
B. Decrease
C. No effect
D. It depends
<table>
<thead>
<tr>
<th>Food</th>
<th>Biological</th>
<th>Behavioral & Decision Making</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Fat</td>
<td>22. Recent hypoglycemia</td>
<td>41. Decision-making biases</td>
</tr>
<tr>
<td>4. Protein</td>
<td>23. During-sleep blood sugars</td>
<td>42. Family relationships and social pressures</td>
</tr>
<tr>
<td>5. Caffeine</td>
<td>24. Dawn phenomenon</td>
<td></td>
</tr>
<tr>
<td>6. Alcohol</td>
<td>25. Infusion set issues</td>
<td></td>
</tr>
<tr>
<td>7. Meal timing</td>
<td>26. Scar tissue and lipodystrophy</td>
<td></td>
</tr>
<tr>
<td>8. Dehydration</td>
<td>27. Intramuscular insulin delivery</td>
<td></td>
</tr>
<tr>
<td>10. Medication dose</td>
<td>29. A higher glucose level</td>
<td></td>
</tr>
<tr>
<td>11. Medication timing</td>
<td>30. Periods (menstruation)</td>
<td></td>
</tr>
<tr>
<td>12. Medication interactions</td>
<td>31. Puberty</td>
<td></td>
</tr>
<tr>
<td>13. Steroid administration</td>
<td>32. Celiac disease</td>
<td></td>
</tr>
<tr>
<td>14. Niacin (Vitamin B3)</td>
<td>33. Smoking</td>
<td></td>
</tr>
<tr>
<td>15. Light exercise</td>
<td>34. Expired insulin</td>
<td></td>
</tr>
<tr>
<td>16. High-intensity and moderate exercise</td>
<td>35. Inaccurate BG reading</td>
<td></td>
</tr>
<tr>
<td>17. Level of fitness/training</td>
<td>36. Outside temperature</td>
<td></td>
</tr>
<tr>
<td>18. Time of day</td>
<td>37. Sunburn</td>
<td></td>
</tr>
<tr>
<td>19. Food and insulin timing</td>
<td>38. Altitude</td>
<td></td>
</tr>
</tbody>
</table>

https://diatribe.org/42factors

At least 42 factors affect glucose!
Types of CGM

<table>
<thead>
<tr>
<th>Professional</th>
<th>Personal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owned by the clinic</td>
<td>Owned by the patient</td>
</tr>
<tr>
<td>Blinded and unblinded (real-time feedback) options</td>
<td>Real-time feedback or scan for feedback (flash device)</td>
</tr>
<tr>
<td>Short term use (3-14 days)</td>
<td>Long term use</td>
</tr>
<tr>
<td>Alarms for hypo/hyperglycemia in select devices</td>
<td>Alarms for hypo/hyperglycemia in select devices</td>
</tr>
<tr>
<td>Insurance coverage for most people with type 1 or type 2 diabetes</td>
<td>Insurance coverage more limited to type 1 diabetes or those on MDI insulin</td>
</tr>
<tr>
<td>Not compatible with insulin pumps</td>
<td>Compatible with smartphones and insulin pumps with select devices</td>
</tr>
</tbody>
</table>

Professional CGM Options

Libre Pro

iPro2

G6 Pro
<table>
<thead>
<tr>
<th></th>
<th>IPro2</th>
<th>G6 Pro</th>
<th>Freestyle LibrePro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinded vs unblinded</td>
<td>Blinded</td>
<td>Both</td>
<td>Blinded</td>
</tr>
<tr>
<td>Maximum wear time</td>
<td>6 days</td>
<td>10 days</td>
<td>14 days</td>
</tr>
<tr>
<td>Calibration</td>
<td>3-4 per day</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Downloading reports</td>
<td>Carelink</td>
<td>Clarity</td>
<td>LibreView</td>
</tr>
<tr>
<td>Care between uses</td>
<td>Clean and disinfect transmitter</td>
<td>Disposable 1 time use</td>
<td>Disposable 1 time use</td>
</tr>
<tr>
<td>MARD (accuracy-the lower the better)</td>
<td>11.05%</td>
<td>9%</td>
<td>12.3%</td>
</tr>
<tr>
<td>Alarms for high/low alerts</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Interfering substances</td>
<td>Acetaminophen</td>
<td>Hydroxyurea</td>
<td>Salicylic acid and vitamin C</td>
</tr>
</tbody>
</table>

CGM Shared Medical Appointments

- Class time: 60-90 minutes
- 4-6 patients, 2 clinicians, 1 student
- Download devices
- Show report on the screen and interpret with the PWD’s food/activity/medication logs
- PWD learn from each other
 - Discuss “bright spots” and “landmines”
- Lifestyle/meal planning recommendations
- Medication adjustments
- Each PWD gets a printed copy of their report and sent to ordering provider
Meet Derek

- 48yoM, type 2 DM x 10 years, maxed out on metformin, GLP-1 agonist, SGLT2 inhibitor, sulfonylurea
- A1C= 9-9.5% for 12 months, FBG and pre-dinner SMBG~150mg/dL
- He agreed to wear a professional CGM for 7 days

Derek was shocked by what happened between breakfast and dinner; he agreed to start insulin.
Types of Personal CGM

Real-Time CGM (rtCGM)
- Sensor data transmitted continuously to a receiver or display device, which allows for alerts and alarms to be provided to the wearer without any action

Intermittently Scanned CGM (isCGM)
- Results are available only when the sensor is scanned with a reading device; optional real-time alerts
- Full 24-h data can be captured and downloaded if the sensor is scanned at least every 8 hours
Personal CGM Options

- Freestyle Libre Flash
- Libre 2
- Medtronic Guardian Connect or Guardian 3
- Senseonics Eversense
- Dexcom G6
CGM: Real Time Data
Personal CGM Comparison

<table>
<thead>
<tr>
<th></th>
<th>Dexcom G6</th>
<th>Freestyle Libre 14 Day</th>
<th>Freestyle Libre 2</th>
<th>Guardian Connect or Eversense Guardian 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin pump integration</td>
<td>T:Slim X2</td>
<td>No</td>
<td>No</td>
<td>Medtronic 670G, 770G, 630G (Guardian 3)</td>
</tr>
<tr>
<td>Receiver</td>
<td>iPhone, Android or receiver</td>
<td>iPhone, Android, or reader</td>
<td>Reader</td>
<td>iPhone or Android (Guardian Connect)</td>
</tr>
<tr>
<td>Maximum wear time</td>
<td>10 days</td>
<td>14 days</td>
<td>14 days</td>
<td>7 days</td>
</tr>
<tr>
<td>Warm-up time</td>
<td>2 hours</td>
<td>1 hour</td>
<td>1 hour</td>
<td>Up to 2 hours</td>
</tr>
<tr>
<td>Calibrations required/day</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2-4</td>
</tr>
<tr>
<td>Downloading reports</td>
<td>Clarity, Glooko, Tidepool</td>
<td>Libreview, Tidepool</td>
<td>Libreview, Tidepool</td>
<td>Carelink, Tidepool</td>
</tr>
<tr>
<td>FDA Approved for dosing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>Hydroxyurea</td>
<td>Salicylic acid, vitamin C</td>
<td>Vitamin C</td>
<td>Acetaminophen</td>
</tr>
<tr>
<td>MARD</td>
<td>9%</td>
<td>9.4%</td>
<td>9.2%</td>
<td>9.64%</td>
</tr>
<tr>
<td>Alarms for high/low</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

CGM Integration

t:slim Basal IQ
InPen smart pen

Medtronic 770G

Medtronic 670G
t:slim Control IQ
All people with diabetes should wear CGM

True or False?
Give PWD a Choice!

One size does **NOT** fit all.

There is no “one-size-fits-all” approach to technology use in people with diabetes
Patient Factors and Preferences Are Key in Individualizing CGM Device Selection

- Insurance Coverage/Cost
- Non-Adjunctive Indication
- Alarms for High/Low
- Data Sharing
- Receiver Functionality
- Calibration
- Predictive Alerts
- Insulin automation
- Link with Mobile Device
- Sensor Visibility
- Smart device integration

Patient Preference
Technology Access

- Meet Abby who is feeling great on her hybrid-close loop insulin pump
- She wears the sensor that is designed for her pump
- She became 65 and went on Medicare
- Medicare doesn’t pay for her sensor
Abby Is Forced to Switch her Technology

TIME IN RANGES

<table>
<thead>
<tr>
<th>Level</th>
<th>mg/dL Range</th>
<th>Percentage</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>>250</td>
<td>10%</td>
<td>2h 24min</td>
</tr>
<tr>
<td>High</td>
<td>181-250</td>
<td>18%</td>
<td>4h 19min</td>
</tr>
<tr>
<td>Target Range</td>
<td>70-180</td>
<td>47%</td>
<td>11h 17min</td>
</tr>
<tr>
<td>Low</td>
<td>54-69</td>
<td>8%</td>
<td>1h 55min</td>
</tr>
<tr>
<td>Very Low</td>
<td><54</td>
<td>17%</td>
<td>4h 5min</td>
</tr>
</tbody>
</table>

AMBULATORY GLUCOSE PROFILE (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.

DAILY GLUCOSE PROFILES

Each daily profile represents a midnight to midnight period with the date displayed in the upper left corner.

What is the Evidence for CGM?
Guideline Updates

- Technology section added in 2019
- Ambulatory glucose profile (AGP) and time in range discussed as glycemic targets (in addition to A1C)
- Real-time CGM (rtCGM) and intermittently scanned CGM (isCGM) are useful to lower A1C and/or reduce hypoglycemia in adults who are not meeting glycemic targets, have hypoglycemia episodes, and/or unawareness
- There is no “one-size-fits-all” approach to technology use in people with diabetes
- CGM use requires robust and ongoing diabetes education, training, and support
Increased BG Monitoring Leads to Lower A1C in T1DM

Fig. 2. Association between blood glucose monitoring frequency and A1C in patients with T1DM (70). A1C = glycated hemoglobin; T1DM = type 1 diabetes mellitus.
A1C: 0.6% difference at 24 weeks (N=158)

DIAMOND Trial-T2DM MDI
A1c Treatment Group Differences

A1C: 0.3% difference at 24 weeks
(N=158)

DIAMOND Trial-T2DM MDI
Greater Benefit with Higher Baseline A1C

<table>
<thead>
<tr>
<th>Baseline HbA1c</th>
<th>Change in HbA1c From Baseline</th>
<th>CGM Group</th>
<th>Usual Care Group</th>
<th>Difference</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 7.5%</td>
<td>-0.9% (n=79)</td>
<td>-0.5% (n=79)</td>
<td>0.4%</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>≥ 8.0%</td>
<td>-0.9% (n=63)</td>
<td>-0.6% (n=57)</td>
<td>0.3%</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>≥ 8.5%</td>
<td>-1.1% (n=39)</td>
<td>-0.7% (n=39)</td>
<td>0.4%</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>≥ 9.0%</td>
<td>-1.4% (n=17)</td>
<td>-0.7% (n=21)</td>
<td>0.7%</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

Flash CGM in T1DM

- Prospective, randomized controlled trial
- 241 participants with type 1 diabetes and A1C < 7.5%, mean A1C = 6.7%

38% reduction in hypoglycemia
19% reduction in hyperglycemia
The FLAsh monitor Registry in the Netherlands (FLARE-NL)

Prospective, observational nationwide registry
- 95 internal medicine and diabetes center N=1365, 16% T2DM

Overall average A1c reduction of 0.4% (p<0.001)
- Baseline A1c >8.5%, reduction of 0.8% (p<0.001)

At 12 months decrease in diabetes related hospitalizations from 13.7% to 4.7% (p<0.05), 66% reduction

37% of subjects reported they increased their exercise/physical activity

95% reported a better understanding of their glucose fluctuations

59% reduction in work absenteeism

The Role of the DCES in Technology
Diabetes technology is associated with improved outcomes, that is enhanced when the person using is knowledgeable and actively engaged.

Simply wearing the device may not automatically translate into health benefits.

The DCES has the central role in defining and establishing a technology-enabled practice setting that is efficient and sustainable.

The DCES can serve as the technology champion in their respective practices and work to reduce therapeutic inertia while improving health outcomes.

CGM Data Interpretation
Data Management Tools

<table>
<thead>
<tr>
<th>System</th>
<th>Website</th>
<th>Associated Mobile Apps</th>
<th>What it Downloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glooko</td>
<td>glooko.com</td>
<td>Glooko</td>
<td>Insulin pumps (Omnipod, Tandem), Dexcom, Eversense, many glucose meters, InPen</td>
</tr>
<tr>
<td>Clarity</td>
<td>clarity.dexcom.com</td>
<td>Dexcom G6, Clarity, Dexcom Follow</td>
<td>Dexcom, InPen</td>
</tr>
<tr>
<td>LibreView</td>
<td>libreview.com</td>
<td>LibreLink, LibreLinkUp</td>
<td>FreeStyle Libre</td>
</tr>
<tr>
<td>Carelink</td>
<td>carelink.medtronic.com</td>
<td>Guardian Connect, Carelink, Sugar IQ Diabetes Assistant</td>
<td>Medtronic insulin pump and Medtronic CGM</td>
</tr>
<tr>
<td>Tidepool</td>
<td>tidepool.org</td>
<td>Tidepool Mobile</td>
<td>Insulin pumps (Medtronic, Tandem, Omnipod), FreeStyle Libre, Dexcom, Guardian Connect, many glucose meters, InPen</td>
</tr>
<tr>
<td>Eversense Data Management System</td>
<td>eversensedms.com</td>
<td>Eversense</td>
<td>Eversense</td>
</tr>
<tr>
<td>InPen Insights Report</td>
<td>NA</td>
<td>InPen</td>
<td>InPen, Dexcom</td>
</tr>
</tbody>
</table>
Standardized CGM Metrics for Clinical Care

Key Metrics

Number of Days CGM is worn
14+ days recommended

Percentage of Time CGM Is Active
>70% of data recommended

Mean Glucose

Glucose Management Indicator (GMI)
CGM-derived estimate of current A1C level

Coefficient of Variation (CV)
Measure of glycemic variability
(st. dev/mean)
CV ≤36% is considered acceptable

CGM-Based Targets for Different Populations

T1D & T2D
- Target Range: 70-180 mg/dL (3.9-10.0 mmol/L)
- Target time:
 - <70 mg/dL (3.9 mmol/L) <4%
 - <54 mg/dL (3.0 mmol/L) <1%
 - >250 mg/dL (13.9 mmol/L) <5%
 - >180 mg/dL (10.0 mmol/L) <25%

Older/High-Risk: T1D & T2D
- Target Range: 70-180 mg/dL (3.9-10.0 mmol/L)
- Target time:
 - <70 mg/dL (3.9 mmol/L) <1%
 - <54 mg/dL (3.0 mmol/L) <1%
 - >250 mg/dL (13.9 mmol/L) <10%
 - >180 mg/dL (10.0 mmol/L) <50%

Pregnancy: T1D
- Target Range: 63-140 mg/dL (3.5-7.8 mmol/L)
- Target time:
 - <63 mg/dL (3.5 mmol/L) <4%
 - <54 mg/dL (3.0 mmol/L) <1%
 - >140 mg/dL (7.8 mmol/L) <25%

1% of the day is ~15 minutes

CGM = continuous glucose monitoring; T1D = type 1 diabetes; T2D = type 2 diabetes.
AGP Report

Glucose Statistics
- 163 Glucose Exposures
- 0.2% Very Low, 2.6% Low, 65.4% In Target Range, 32.0% High, 0.1% Very High

Coefficient of Variation: 40.5%
Standard Deviation: 66 mg/dL
% Time Glucose Active: 79.7%

Graphs and charts showing glucose levels over time, with detailed analysis of glucose frequency distributions and target ranges.
Customizing Reports

- **AGP Report**
- **Glucose Pattern Insights**
- **Monthly Summary**
- **Daily Log**
- **Snapshot**
- **Mealt ime Patterns**
- **Weekly Summary**
- **Daily Patterns**

Patient Thresholds

- **Target Range**: 70 to 180 mg/dL
- **Low Glucose Threshold**: 70 mg/dL
- **High Glucose Threshold**: 250 mg/dL

Revert Report Settings to your Report Preferences

Learn more about Report Preferences

- Include Patient Information
 - **Practice Label**: Cleveland Clinic Main
Target range refers to 70 – 180 mg/dL, except for patients who are pregnant. Otherwise, interpreting time-in-range and other key metrics is difficult.
Snapshot: Hypoglycemia

Glucose

- Average Glucose: 259 mg/dL
- % above target: 74%
- % in target: 23%
- % below target: 3%

Low Glucose Events

- 8 events
- Average duration: 64 min

Sensor Usage

- Sensor data captured: 50%
- Daily scans: 2

Comments

- Gaps found in the insulin data, 21 days in this reporting period have no recorded insulin events.
- Gaps found in food data, 21 days in this reporting period have no recorded food events.
Comparing Different Days

Fri Jun 23

Sat Jun 24

Sun Jun 25

Mon Jun 26

Tue Jun 27

Wed Jun 28

123 mg/dL

135 mg/dL

134 mg/dL

120 mg/dL

128 mg/dL

137 mg/dL

86% 1% 13%

75% 1% 24%

51% 22% 27%

90% 0% 10%

85% 2% 13%

64% 7% 29%
CGM Data Review - DATAA

D - Download Data
- Key metrics, AGP, day by day or spaghetti graph
- Start with global overview—what AGP, key metrics mean, ask what the person learned/what is going well with self-management

A - Assess Safety
- Hypoglycemia - identify times below range, % time in hypoglycemia, # events
- Interactive discussion: possible causes and solutions

T - Time in Range
- Focus on the positive - identify days or times where time in range is highest
- Interactive discussion: how to replicate what is working well

A - Areas to Improve
- Hyperglycemia - Identify times above range, % time in hyperglycemia, # events
- Interactive discussion: possible causes, solutions, and adjustments to self-management

A - Action Plan
- Develop collaboratively with the person with diabetes

At each step, express that this is information, not good or bad
Numbers are not Good or Bad

- Thank the person for wearing CGM
- Express that this is information, not good or bad
- Ask permission to explore the highs
- If the person wants to stop at any point, develop an action plan until next visit

Action Plan in collaboration with the PWD
Case Study: Meet Janet

- 70-years old female
- Diagnosed with type 2 diabetes 18 years ago
- Retired
- Married, 3 children, 2 grandchildren
- A1C 10.5%
- Has arthritis, hoping to get a knee replacement, but needs to bring down A1C

- BMI=34kg/m²
- Meds
 - Metformin 1000 mg BID
 - Insulin glargine 60 units daily
 - Insulin lispro 10-20 units TID at each meal
What is Janet’s time in range goal?

A. >50%
B. >70%
C. >80%
D. >100%
Janet Wears Professional CGM

- Key metrics, AGP, day by day or spaghetti graph
- Start with global overview; what AGP, key metrics mean, ask what the person learned/what is going well with self-management
No hypoglycemia, however, glucose falls overnight, Janet feels symptoms
Rarely taking lispro, never misses glargine

Assess Safety
- Hypoglycemia - identify times below range, % time in hypoglycemia, # events
- Interactive discussion: possible causes and solutions

Time in Range
- Focus on the positive - identify days or times where time in range is highest
- Interactive discussion: how to replicate what is working well

Statistics for this day
- Average Glucose: 171 mg/dL
- Standard Deviation: 65 mg/dL

Time in Range
- 19% Very High
- 14% High
- 67% In Range
- 0% Low
- 0% Very Low

Wednesday
- Ate eggs for breakfast, sandwich for lunch and she injected lispro
Janet liked seeing the data
She learned the direct effects of food on her blood sugars
She realized that she would benefit from taking lispro with her food during the day
Janet gets a prescription for personal rtCGM
Follow-up with the diabetes care and education specialist
1 Month Later

- Time in range improved!
- Janet is more consistent with lispro (2 injections/day) but asks if there are any other medications that can help with weight and blood sugars
- GLP-1 agonist is added
3 Months Later

- Time in range improved, >70%!
- A1C is now 7.1%
- Janet is eating smaller meals, allows herself 1 treat/day, taking lispro consistently at 2 main meals, continues on glargine and GLP-1 agonist (rarely misses doses)
- She lost 12 lbs, feels great!
- She is scheduled for her surgery
CGM Revenue Opportunities

<table>
<thead>
<tr>
<th>CGM Services</th>
<th>Medicare Fee Schedule</th>
<th>Private Payer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT 95249 (Personal CGM - Startup/Training)</td>
<td>$55.58</td>
<td>$127</td>
</tr>
<tr>
<td>Ambulatory CGM of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; patient-provided equipment, sensor placement, hook-up, calibration of monitor, patient training, and printout of recording. Bill only once during the time period that the patient owns the device.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT 95250 (Professional CGM)</td>
<td>$152.66</td>
<td>$303304</td>
</tr>
<tr>
<td>Ambulatory CGM of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; physician or other qualified health care professional (office) provided equipment, sensor placement, hook-up, calibration of monitor, patient training, removal of sensor, and printout of recording. Do not bill more than 1x/month.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT 95251 (CGM Interpretation)</td>
<td>$36.81</td>
<td>$96</td>
</tr>
<tr>
<td>Ambulatory CGM of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; analysis, interpretation and report. Do not bill more than 1x/month</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Summary

- Clinical data and guidelines support use of CGM in many different types of people with diabetes (PWD)

- There are multiple CGM options and connected devices; one size does not fit all

- Retrospective and real time CGM data can engage the PWD in self-management

- Review CGM in 5 steps:
 - Download, assess safety, time in range, areas to improve, action plan
Resources

- Diabetes Advanced Network Access (DANAtech)
 - https://www.danatech.org/

- Association of Diabetes Care & Education Specialists (ADCES) Glucose monitoring resources

- DiaTribe: https://diatribe.org/

- Eversense: https://eversensediabetes.com

- Dexcom G6: https://www.dexcom.com/g6-cgm-system

- Freestyle Libre: https://www.freestylelibre.us/
THANK YOU