Optimizing Use of Continuous Glucose Monitoring in Clinical Practice

Diana Isaacs, PharmD, BCPS, BCACP, BC-ADM, CDCES
Clinical Pharmacy Specialist/CGM Program Coordinator
Cleveland Clinic Diabetes Center
Cleveland, OH

Disclosures
• Diana Isaacs, PharmD is a consultant or speaker for the following companies:
 - Dexcom, Abbott, Companion Medical, Insulet, Novo Nordisk, Lilly, Xeris Pharmaceuticals

Learning Objectives
At the end of this presentation, participants will be able to:
• Summarize the clinical data supporting CGM use in people with diabetes
• Compare and contrast CGM devices available for personal and professional use
• Utilize the ambulatory glucose profile and key metrics to systematically review a CGM report
• Describe how to use retrospective and real time CGM data to engage the PWD in self-management

Introduction to CGM
• Measures glucose from interstitial fluid (ISF) every 1-5 minutes
• Records glucose every 5-15 minutes (up to 288 readings/day)
• 3 components (Sensor, Transmitter, Receiver)

SMBG vs CGM

Poor Technique Can Negatively Affect Accuracy
Skin contaminants reduce meter accuracy 1 hour after peeling fruit

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Washed Hands</th>
<th>Exposed Finger (No Washing)</th>
<th>1 Alcohol Wipe</th>
<th>5 Alcohol Wipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peeling an orange</td>
<td>98 mg/dL</td>
<td>171 mg/dL</td>
<td>118 mg/dL</td>
<td>119 mg/dL</td>
</tr>
<tr>
<td>(n=10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peeling a grape</td>
<td>93 mg/dL</td>
<td>360 mg/dL</td>
<td>274 mg/dL</td>
<td>131 mg/dL</td>
</tr>
<tr>
<td>(n=10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peeling a kiwi</td>
<td>90 mg/dL</td>
<td>183 mg/dL</td>
<td>144 mg/dL</td>
<td>106 mg/dL</td>
</tr>
<tr>
<td>(n=10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limitations to Hemoglobin A1C

- It is a surrogate marker
- Based on an average
- Factors that affect red blood cell turnover can make this inaccurate
- Anemia, hemoglobinopathies and other conditions may falsely elevate or decrease

How does exercise affect glucose levels?

- A. Increase
- B. Decrease
- C. No effect
- D. It depends

Types of CGM

<table>
<thead>
<tr>
<th>Professional</th>
<th>Personal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owned by the clinic</td>
<td>Owned by the patient</td>
</tr>
<tr>
<td>Blinded and unblinded (real-time feedback) options</td>
<td>Real-time feedback or scan for feedback (flash device)</td>
</tr>
<tr>
<td>Short term use (3-14 days)</td>
<td>Long term use</td>
</tr>
<tr>
<td>Alarms for hypo/hyperglycemia in select devices</td>
<td>Alarms for hypo/hyperglycemia in select devices</td>
</tr>
<tr>
<td>Insurance coverage for most people with type 1 or type 2 diabetes</td>
<td>Insurance coverage more limited to type 1 diabetes or those on MDI insulin</td>
</tr>
<tr>
<td>Not compatible with insulin pumps</td>
<td>Compatible with smartphones and insulin pumps with select devices</td>
</tr>
</tbody>
</table>

At least 42 factors affect glucose!

Professional CGM Options

- Libre Pro
- iPro2
- G6 Pro

Professional CGM Comparison

<table>
<thead>
<tr>
<th></th>
<th>Libre Pro</th>
<th>G6 Pro</th>
<th>Freestyle LibrePro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinded vs unblinded</td>
<td>Blinded</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Maximum wear time</td>
<td>6 days</td>
<td>10 days</td>
<td>14 days</td>
</tr>
<tr>
<td>Calibration</td>
<td>3x per day</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Downloading reports</td>
<td>Carelink</td>
<td>Clarity</td>
<td>LibreView</td>
</tr>
<tr>
<td>Care between uses</td>
<td>Clean and disinfect transmitter</td>
<td>Disposable 1 time use</td>
<td>Disposable 1 time use</td>
</tr>
<tr>
<td>MARD (accuracy-the lower the better)</td>
<td>11.05%</td>
<td>9%</td>
<td>12.3%</td>
</tr>
<tr>
<td>Alarms for high/low alerts</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Interfering substances</td>
<td>Acetaminophen, Hydroxyurea</td>
<td>Salicylic acid and vitamin C</td>
<td></td>
</tr>
</tbody>
</table>

CGM Shared Medical Appointments
- Class time: 60-90 minutes
- 4-6 patients, 2 clinicians, 1 student
- Download devices
- Show report on the screen and interpret with the PWD’s food/activity/medication logs
- PWD learn from each other—Discuss “bright spots” and “landmines”
- Lifestyle/meal planning recommendations
- Medication adjustments
- Each PWD gets a printed copy of their report and sent to ordering provider

Meet Derek
- 48yoM, type 2 DM x 10 years, maxed out on metformin, GLP-1 agonist, SGLT2 inhibitor, sulfonylurea
- A1C 9-9.5% for 12 months, FBG and pre-dinner SMBG ~150mg/dL
- He agreed to wear a professional CGM for 7 days

Derek was shocked by what happened between breakfast and dinner; he agreed to start insulin.

Types of Personal CGM

- **Real-Time CGM (rtCGM)**
 - Sensor data transmitted continuously to a receiver or display device, which allows for alerts and alarms to be provided to the wearer without any action

- **Intermittently Scanned CGM (isCGM)**
 - Results are available only when the sensor is scanned with a reading device; optional real time alerts
 - Full 24-h data can be captured and downloaded if the sensor is scanned at least every 8 hours

Personal CGM Options

- Freestyle Libre Flash
- Libre 2
- Medtronic Guardian Connect or Guardian 3
- Dexcom G6
- Senseonics Eversense

CGM: Real Time Data

Personal CGM Comparison

<table>
<thead>
<tr>
<th></th>
<th>Dexcom G6</th>
<th>Freestyle Libre 14 Day</th>
<th>Freestyle Libre 2</th>
<th>Guardian Connect or Eversense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin pump</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Integration</td>
<td>T:Slim X2</td>
<td>No</td>
<td>No</td>
<td>Medtronic 710G, 770G, 630G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Guardian 3)</td>
</tr>
<tr>
<td>Receiver</td>
<td>iPhone, Android</td>
<td>No</td>
<td>No</td>
<td>Medtronic 710G, 770G, 630G</td>
</tr>
<tr>
<td></td>
<td>reader</td>
<td>Reader</td>
<td>Reader</td>
<td>(Guardian Connect)</td>
</tr>
<tr>
<td>Maximum wear</td>
<td>10 days</td>
<td>14 days</td>
<td>14 days</td>
<td>7 days</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td>30 days</td>
</tr>
<tr>
<td>Warm-up time</td>
<td>2 hours</td>
<td>1 hour</td>
<td>1 hour</td>
<td>Up to 2 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 hours</td>
</tr>
<tr>
<td>Calibrations</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>required/day</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Downloading</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>reports</td>
<td></td>
<td>Clarity, Glooko, Tidepool</td>
<td>Libreview, Tidepool</td>
<td>Eversense data management system, Glooko</td>
</tr>
<tr>
<td>FDA Approved for</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>dosing</td>
<td></td>
<td>Glooko</td>
<td>Glooko</td>
<td>Eversense data management system, Glooko</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>No</td>
<td>Hydroxyurea, Salicylic acid, vitamin C</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MARD</td>
<td>9%</td>
<td>9.4%</td>
<td>9.25%</td>
<td>9.5%</td>
</tr>
<tr>
<td>Alarm for high/low</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Meet Derek

- 48yoM, type 2 DM x 10 years, maxed out on metformin, GLP-1 agonist, SGLT2 inhibitor, sulfonylurea
- A1C 9-9.5% for 12 months, FBG and pre-dinner SMBG ~150mg/dL
- He agreed to wear a professional CGM for 7 days

Derek was shocked by what happened between breakfast and dinner; he agreed to start insulin.

Types of Personal CGM

- **Real-Time CGM (rtCGM)**
 - Sensor data transmitted continuously to a receiver or display device, which allows for alerts and alarms to be provided to the wearer without any action

- **Intermittently Scanned CGM (isCGM)**
 - Results are available only when the sensor is scanned with a reading device; optional real time alerts
 - Full 24-h data can be captured and downloaded if the sensor is scanned at least every 8 hours

Personal CGM Options

- Freestyle Libre Flash
- Libre 2
- Medtronic Guardian Connect or Guardian 3
- Dexcom G6
- Senseonics Eversense

CGM: Real Time Data

Personal CGM Comparison

<table>
<thead>
<tr>
<th></th>
<th>Dexcom G6</th>
<th>Freestyle Libre 14 Day</th>
<th>Freestyle Libre 2</th>
<th>Guardian Connect or Eversense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin pump</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Integration</td>
<td>T:Slim X2</td>
<td>No</td>
<td>No</td>
<td>Medtronic 710G, 770G, 630G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Guardian 3)</td>
</tr>
<tr>
<td>Receiver</td>
<td>iPhone, Android</td>
<td>No</td>
<td>No</td>
<td>Medtronic 710G, 770G, 630G</td>
</tr>
<tr>
<td></td>
<td>reader</td>
<td>Reader</td>
<td>Reader</td>
<td>(Guardian Connect)</td>
</tr>
<tr>
<td>Maximum wear</td>
<td>10 days</td>
<td>14 days</td>
<td>14 days</td>
<td>7 days</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td>30 days</td>
</tr>
<tr>
<td>Warm-up time</td>
<td>2 hours</td>
<td>1 hour</td>
<td>1 hour</td>
<td>Up to 2 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 hours</td>
</tr>
<tr>
<td>Calibrations</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>required/day</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Downloading</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>reports</td>
<td></td>
<td>Clarity, Glooko, Tidepool</td>
<td>Libreview, Tidepool</td>
<td>Eversense data management system, Glooko</td>
</tr>
<tr>
<td>FDA Approved for</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>dosing</td>
<td></td>
<td>Glooko</td>
<td>Glooko</td>
<td>Eversense data management system, Glooko</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>No</td>
<td>Hydroxyurea, Salicylic acid, vitamin C</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MARD</td>
<td>9%</td>
<td>9.4%</td>
<td>9.25%</td>
<td>9.5%</td>
</tr>
<tr>
<td>Alarm for high/low</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
All people with diabetes should wear CGM

True or False?

Give PWD a Choice!

There is no “one-size-fits-all” approach to technology use in people with diabetes

Patient Factors and Preferences Are Key in Individualizing CGM Device Selection

Technology Access

- Meet Abby who is feeling great on her hybrid-close loop insulin pump
- She wears the sensor that is designed for her pump
- She became 65 and went on Medicare
- Medicare doesn’t pay for her sensor

Abby Is Forced to Switch her Technology
What is the Evidence for CGM?

Guideline Updates

- Technology section added in 2019
- Ambulatory glucose profile (AGP) and time in range discussed as glycemic targets (in addition to A1C)
- Real-time CGM (rtCGM) and intermittently scanned CGM (isCGM) are useful to lower A1C and/or reduce hypoglycemia in adults who are not meeting glycemic targets, have hypoglycemia episodes, and/or unawareness
- There is no “one-size-fits-all” approach to technology use in people with diabetes
- CGM use requires robust and ongoing diabetes education, training, and support

Increased BG Monitoring Leads to Lower A1C in T1DM

DIAMOND Trial: T1DM MDI

<table>
<thead>
<tr>
<th>HbA1c baseline</th>
<th>CGM Group</th>
<th>Usual Care Group</th>
<th>Difference</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 7.5%</td>
<td>-0.9% (n=79)</td>
<td>-0.5% (n=79)</td>
<td>0.4%</td>
<td>0.02</td>
</tr>
<tr>
<td>≥ 8.0%</td>
<td>-0.9% (n=63)</td>
<td>-0.6% (n=57)</td>
<td>0.3%</td>
<td>0.05</td>
</tr>
<tr>
<td>≥ 8.5%</td>
<td>-1.1% (n=39)</td>
<td>-0.7% (n=39)</td>
<td>0.4%</td>
<td>0.02</td>
</tr>
<tr>
<td>≥ 9.0%</td>
<td>-1.4% (n=17)</td>
<td>-0.7% (n=21)</td>
<td>0.7%</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Flash CGM in T1DM

- Prospective, randomized controlled trial
- 241 participants with type 1 diabetes and A1C<7.5%, mean A1C=6.7%

Days

38% reduction in hypoglycemia
19% reduction in hyperglycemia

FLARE-NL 4 Study

- The FLAsh monitor Registry in the Netherlands (FLARE-NL)
- Prospective, observational nationwide registry
 - 95 internal medicine and diabetes center N=1365, 16% T2DM
- Overall average A1c reduction of 0.4% (p<0.001)
 - Baseline A1c >8.5%, reduction of 0.8% (p<0.001)
- At 12 months decrease in diabetes related hospitalizations from 13.7% to 4.7% (p<0.05), 66% reduction
- 37% of subjects reported they increased their exercise/physical activity
- 95% reported a better understanding of their glucose fluctuations
- 59% reduction in work absenteeism

The Role of the DCES in Technology

- Diabetes technology is associated with improved outcomes, that is enhanced when the person using is knowledgeable and actively engaged
- Simply wearing the device may not automatically translate into health benefits
- The DCES has the central role in defining and establishing a technology-enabled practice setting that is efficient and sustainable
- The DCES can serve as the technology champion in their respective practices and work to reduce therapeutic inertia while improving health outcomes

CGM Data Interpretation
Data Management Tools

<table>
<thead>
<tr>
<th>System</th>
<th>Website</th>
<th>Associated Mobile Apps</th>
<th>What it Downloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glooko</td>
<td>glooko.com</td>
<td>Glooko</td>
<td>Insulin pumps (Omnipod, Tandem), Dexcom, Eversense, many glucose meters, kPen</td>
</tr>
<tr>
<td>Clarity</td>
<td>clarity.dexcom.com</td>
<td>Dexcom</td>
<td>Dexcom, InPen</td>
</tr>
<tr>
<td>LibreView</td>
<td>libreview.com</td>
<td>LibreLink, LibreLinkUp</td>
<td>FreeStyle Libre</td>
</tr>
<tr>
<td>Clarity</td>
<td>clarity.medtronic.com</td>
<td>Guardian Connect, Carelink, Sugar IQ Diabetes Assistant</td>
<td>Medtronic insulin pump and Medtronic CGM</td>
</tr>
<tr>
<td>Tidepool</td>
<td>tidepool.org</td>
<td>Tidepool Mobile</td>
<td>Insulin pumps (Medtronic, Tandem, Omnipod), Freestyle Libre, Dexcom, Guardian Connect, many glucose meters, kPen</td>
</tr>
<tr>
<td>Eversense Data Management System</td>
<td>eversensedms.com</td>
<td>Eversense</td>
<td>Eversense</td>
</tr>
<tr>
<td>InPen Insights Report</td>
<td>NA</td>
<td>InPen</td>
<td>InPen, Dexcom</td>
</tr>
</tbody>
</table>

Standardized CGM Metrics for Clinical Care

<table>
<thead>
<tr>
<th>Key Metrics</th>
<th>Number of Days CGM is worn</th>
<th>Percentage of Time CGM Is Active</th>
<th>Time above range (TAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>141 days recommended</td>
<td>>70% of data recommended</td>
<td>>250 mg/dL</td>
</tr>
</tbody>
</table>

Mean Glucose

Coefficient of Variation (CV) - Measure of glycemic variability (st. dev/mean)

- CV <36% is considered acceptable

- CV >36% is considered unacceptable

Level 2 Hypoglycemia

- <70 mg/dL

Level 1 Hypoglycemia

- <54 mg/dL

Level 2 Hyperglycemia

- >250 mg/dL

Level 1 Hyperglycemia

- >180 mg/dL

Time in range (TIR)

- 70-180 mg/dL

Time above range (TAR)

- >250 mg/dL

Time below range (TBR)

- <54 mg/dL

CGM-Based Targets for Different Populations

<table>
<thead>
<tr>
<th>AGP Report</th>
<th>Customizing Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Time in Range Settings

- Target range refers to 70 – 180 mg/dL, except for patients who are pregnant
- Otherwise, interpreting time-in-range and other key metrics is difficult

Case Study: Meet Janet

- 70-years old female
- Diagnosed with type 2 diabetes 18 years ago
- Retired
- Married, 3 children, 2 grandchildren
- A1C 10.5%
- Has arthritis, hoping to get a knee replacement, but needs to bring down A1C

BMI=34kg/m²
- Metformin 1000 mg BID
- Insulin glargine 60 units daily
- Insulin lispro 10-20 units TID at each meal

Numbers are not Good or Bad

- Thank the person for wearing CGM
- Express that this is information, not good or bad
- Ask permission to explore the highs
- If the person wants to stop at any point, develop an action plan until next visit

CGM Data Review- DATAA

- Key metrics, AGP, day by day or spaghetti graph
- Start with global overview what AGP key metrics mean, ask what the person learned/what is going well with self-management
- Hypoglycemia - Identify times below range, % time in hypoglycemia, If events
- Interactive discussion: possible causes and solutions
- Focus on the positive - identify days or times when time in range is highest
- Interactive discussion: how to replace what is working well

At each stop, express that this is information, not good or bad

Action Plan in collaboration with the PWD
What is Janet's time in range goal?

A. >50%
B. >70%
C. >80%
D. >100%

DATAA Discussion

No hypoglycemia, however, glucose falls overnight, Janet feels symptoms
Rarely taking lispro, never misses glargine

- Ate eggs for breakfast, Sandwich for lunch and she injected lispro

Janet Wears Professional CGM

Janet liked seeing the data
- She learned the direct effects of food on her blood sugars
- She realized that she would benefit from taking lispro with her food during the day

Janet gets a prescription for personal rCGM
- Follow-up with the diabetes care and education specialist

1 Month Later

- Time in range improved!
- Janet is more consistent with lispro (2 injections/day) but asks if there are any other medications that can help with weight and blood sugars
- GLP-1 agonist is added

3 Months Later

- Time in range improved, >70%!
- A1C is now 7.1%
- Janet is eating smaller meals, allows herself 1 treat/day, taking lispro consistently at 2 main meals, continues on glargine and GLP-1 agonist (rarely misses doses)
- She lost 12 lbs, feels great!
- She is scheduled for her surgery
CGM Revenue Opportunities

<table>
<thead>
<tr>
<th>CGM Services</th>
<th>Medicare Fee Schedule</th>
<th>Private Payer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulatory CGM of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; patient-provided equipment, sensor placement, hook-up, calibration of monitor, patient training, and printout of recording.</td>
<td>$55.58</td>
<td>$127</td>
</tr>
<tr>
<td>Bill only once during the time period that the patient owns the device.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambulatory CGM of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; physician or other qualified health care professional (office) provided equipment, sensor placement, hook-up, calibration of monitor, patient training, removal of sensor, and printout of recording.</td>
<td>$152.66</td>
<td>$305.94</td>
</tr>
<tr>
<td>Do not bill more than 1x/month.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambulatory CGM of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; analysis, interpretation and report.</td>
<td>$36.01</td>
<td>$86</td>
</tr>
<tr>
<td>Do not bill more than 1x/month.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Summary

- Clinical data and guidelines support use of CGM in many different types of people with diabetes (PWD)
- There are multiple CGM options and connected devices; one size does not fit all
- Retrospective and real time CGM data can engage the PWD in self-management
- Review CGM in 5 steps:
 - Download, assess safety, time in range, areas to improve, action plan

Resources

- Diabetes Advanced Network Access (DANAtech)
 - https://www.danatech.org/
- Association of Diabetes Care & Education Specialists (ADCES) Glucose monitoring resources
- DiaTribe: https://diatribe.org/
- Eversense: https://eversensediabetes.com
- Dexcom G6: https://www.dexcom.com/g6-cgm-system
- Freestyle Libre: https://www.freestylelibre.us/

THANK YOU